

 280

Teaching programming in Technology teacher
education: Revealing student teachers' perceptions

Anna Perez, Linnaeus University, Sweden
Maria Svensson, University of Gothenburg, Sweden
Jonas Hallström, Linköping University, Sweden

Abstract
This study explores the changing landscape of technology teacher education, in relation to the
increasing integration of digital content, especially programming, in teacher education for
grades 4–6 (pupils 10-12 years old) and how student teachers in Sweden perceive this content.
Limited research exists on student teachers in technology, particularly focusing on
programming. This study therefore investigates student teachers' perceptions of teaching
programming in technology education, after completing their technology course in teacher
education. We answer the following research questions: What are the student teachers’
perceptions of teaching programming in technology education? and How is potential subject
didactics knowledge for teaching programming manifested in student teachers’ perceptions of
technology teaching? Using a phenomenographic approach, 25 student teachers’ perceptions
of programming in technology education were investigated through semi-structured individual
and group interviews. Different perceptions were revealed and presented in four categories: (1)
following instructions in a logical order, (2) learning a programming language, (3) solving
technological problems, and (4) understanding and describing a technological environment. The
results show that student teachers' perceptions of the subject of technology predominantly
focuses on following instructions and the learning of a programming language. The identified
potential subject didactics knowledge is constituted of an awareness of three critical aspects:
understanding programming language, understanding programming as a way of solving
problems, and the relationships of technological problems to everyday life and society. This
study offers valuable insight into the development of competencies required to teach
programming in technology, informing educational strategies and future research in this
emerging field.

Keywords
Student teachers, Technology education, Programming, Phenomenography

Introduction
Over the last two decades, our everyday lives have changed and become increasingly
digitalised; for example, in the form of robot lawn mowers, vacuum cleaners, and AI-supported
banking transactions. The increasing digitalisation of society has contributed to changes in
school curriculum documents in Sweden (Skolverket, 2017) and other countries. In Sweden, for
example, digital technology and programming have been included as educational content in the
technology syllabus since 2018. However, many teachers approach this new educational
content with uncertainty (Sentance & Csizmadia, 2017; Vinnervik, 2023; Webb et al., 2017),
because programming was not part of their own teacher education and the curriculum does
not say how programming should be taught or how any difficulties learners encounter should

 281

be addressed (Passey, 2017). Therefore, there is a need for more knowledge about what is
involved in teaching programming as part of teacher education and what competencies
technology student teachers need to develop to be prepared for their future teaching career.

In line with this, there is a need to understand the perceptions of student teachers in order to
inform teacher education (Koster et al., 2005; Schneider et al., 2013). In a study by Perez and
Svensson (2024), the experiences of student teachers with programmed technological
artefacts, including elevators, tumble dryers, traffic lights, and keyboards, were investigated.
The result shows that student teachers’ initial understanding of those programmed
technological artefacts can be described as ranging from experiencing only the physical
interface to components as and within a system, but these were still only a limited set of all the
possible aspects of programmed technological artefacts (Perez & Svensson, 2024). In addition,
student teachers’ inadequate subject knowledge is a problem reported more frequently by
primary school teachers than by their secondary counterparts (Selby & Woollard, 2014). This
imbalance may be accounted for by the fact that primary school teachers are responsible for
teaching a range of subjects, whereas secondary school teachers concentrate on fewer areas
with more comprehensive training.

An important mission for primary teacher education should therefore be to instil student
teachers with the ability to plan, implement, and evaluate the content of different subjects and
understand the characteristics of each subject. In technology education, there is still a lack of
research, specifically on student teachers' knowledge of programming. Therefore, it is
imperative to investigate how student teachers perceive their upcoming teaching regarding
programming in the subject of technology, after completing the technology teacher education
course included in their training.

Aim and research questions

This study investigates student teachers' perceptions of teaching programming in technology
education, after completing their technology course in teacher education. The following
research questions are posed:

• What are the student teachers’ perceptions of teaching programming in technology
education?

• How is potential subject didactics knowledge for teaching programming manifested in
student teachers’ perceptions of technology teaching?

Programming as part of technology education and subject didactics
The study of teaching and learning of a subject content is often referred to as subject didactics,
which can be seen as a bridge between subject knowledge and pedagogy (see for example
Sjøberg (2001)). Subject didactics in, for example, the Nordic, German and French context thus
refers to the subject-specific aspects of teaching and learning (Osbeck et al., 2018; Rothgangel
& Vollmer, 2020; Schoenfeld, 1998). It addresses the three key questions: What (the relevant
content), Why (the goals), and How (the appropriate methods) of teaching and learning within
a certain subject (Rothgangel & Vollmer, 2020). Teacher education develops student teachers’
knowledge in subject didactics (Osbeck et al., 2018; Vollmer, 2022). In technology education for
grades 4-6 (pupils 10-12 years old) this involves both subject knowledge and its subject
didactics. For instance, the 2018 revision to the Swedish compulsory school curriculum aims to

 282

help pupils understand the impact of digitalisation on individuals and society. Programming is
included in several subjects, primarily mathematics and technology. The revised technology
curriculum further states that pupils should acquire skills to control their constructions or other
objects through programming, and reflect on opportunities, risks and safety when using
technology in everyday life (Skolverket, 2017). Consequently, teacher education in technology
must equip student teachers with the necessary skills to teach programming effectively.

There is a lack of research on both technology teachers and technology student teachers'
understanding and teaching of programming. However, the small amount of research that does
exist shows that technology teachers feel uncertain about how to teach programming, probably
because it has been a marginal part of technology teacher education (Sentance & Csizmadia,
2017; Vinnervik, 2022; Webb et al., 2017). Those who taught programming before it became a
compulsory part of Swedish technology education in 2018 were mostly computer enthusiasts
who had learned to program themselves (cf. Nouri et al. (2020)).

Furthermore, there is a lack of research specifically on student teachers' understanding of the
role of programming in relation to the school subject of technology. We know very little about
what these prospective technology teachers learn about programming during their teacher
education. Moreover, computational thinking (CT) in teacher education, student teachers’
perceptions of programming and what constitutes the nature of programming in technology
teacher education, are underdeveloped areas of research. However, Tsai et al. (2021)
demonstrate that a game-design project helped improve the programming skills and
computational thinking of student teachers in Taiwanese pre-service primary teacher
education. Other studies, such as Rowston et al. (2022) are more inconclusive and show that
technology integration in teacher education, including programming, can be more haphazard.
In conclusion, more research is needed that could potentially shed light on what knowledge
components need to be in focus to improve programming teaching in technology teacher
education.

A framework for technological knowledge and computational thinking
Technology is created by humans to solve problems or fulfil needs and desires (Kline, 2003;
Lindqvist, 1987). Technology is not only about artefacts (objects, products) but also about
processes, methods, systems, and activities—and knowledge about these—either for
innovation and production or for use (Bijker et al., 2012; Hallström & Williams , 2022; Mitcham,
1994; Van der Vleuten et al., 2017). Technology is also something fundamentally material, as
can be seen in the entire human-built world that surrounds us (Hughes, 2004; Ihde, 1993;
Schatzberg, 2018). In line with this, even digital technology that is made up of abstract machine
code in ones and zeros—basically Boolean mathematical expressions—must be considered as
technology because it requires electrical signals in physical computers for it to work (Denning &
Tedre, 2019; Hallström, 2024). Technology can therefore be referred to as the “designed
world”, in correspondence with the “natural world” as a term for the environment (Blomkvist &
Kaijser, 1998).

Technological knowledge is, in a sense, practical and concerned with designing, crafting, and
making (Mitcham, 1994). However, technological knowledge is not only practical and hands-on,
nor is it merely an application of scientific or other knowledge for practical use, but it is its own
area and tradition of knowledge that is related to the designed world and human material

 283

culture, in all their variety (Schatzberg, 2018). This means that technological knowledge
includes skills and know-how to manage the designed world (procedural knowledge), cognitive
and other mental conceptions and theories that make sense of the same (conceptual
knowledge), as well as an understanding of the relationship of technology to society and the
environment (contextual knowledge) (cf. Nordlöf et al. (2022); Williams (2017)). Technological
knowledge therefore concerns the material as well as the abstract, the analogue as well as the
digital aspects of the designed world (Hallström, 2024).

Computational thinking (CT) widely applied in computer science, is closely associated with
programming skills. In line with the above reasoning, it could also be defined as a kind of
technological knowledge. Denning and Tedre (2019) claim that CT encompasses the skills and
practices essential for creating computations to perform specific tasks through artefacts, as
well as interpreting the world as a series of informational processes. As described by Denning
and Tedre (2019), CT also has two further dimensions. One focuses on the mechanics of
computer operations, code expression in programming languages, and software assembly into
systems. The other dimension focuses on anticipating design needs and considering the user's
context. Both dimensions contribute to understanding the purposeful design of technological
solutions and artefacts to address challenges (Denning & Tedre, 2019), and both require
applying a systems perspective to technological and computational solutions; that is, systems
thinking: “a set of skills for understanding, analysing, and working with systems consisting of
multiple interconnected elements and exhibiting emergent properties” (Ho, 2019, p. 2764).

Methodology
This article is based on the preliminary findings presented at the PATT40 conference (Perez et
al., 2023). The analysis has since been completed, rendering the results more reliable through
rigorous categorization validation, including at the aforementioned conference.

To answer the research questions, we used a qualitative method using semi-structured
individual and group interviews with student teachers, and a phenomenographic approach
(Marton & Booth, 1997) was used to analyse the transcripts and find variation in student
teachers' perceptions regarding teaching programming in technology.

Phenomenography

Phenomenography as a research tradition is broadly situated within an interpretive
epistemological orientation and focuses on the variation in how a phenomenon is experienced
by a group of individuals (Collier-Reed, Ingerman & Berglund, 2009; Marton & Booth, 1997).
Phenomenography is underpinned by, among other things, a focus on the relational nature of
human experience, a non-dualistic ontological perspective, an explicit focus on the experience
of phenomena, and the adoption of a second-order perspective. The result of the research is a
set of categories which describe the qualitatively different ways of experiencing this
phenomenon and which are logically related in structure and meaning. The categories do not
describe how individuals perceive the phenomenon - rather they describe the phenomenon at
a collective level (Marton, 1981; Marton & Booth, 1997; Runesson, 2006).

This study investigates the different ways in which student teachers experienced, perceived, or
understood programming in technology education, here labelled as their ‘perceptions’ of this
phenomenon. Even though a phenomenographic study investigates the individual experience,

 284

the area of interest here is these experiences taken together; that is, the collective perceptions
of a phenomenon (Booth & Ingerman, 2002; Marton, 1981; Marton & Booth, 1997; Trigwell,
2006). Data collected from interviews is interpreted and described by researchers to reshape
the individual voice into a collective statement. The perceptions shared by the collective of
student teachers is of interest, and therefore all perceptions are collected into a dataset for
categorisation (Trigwell, 2006).

The inductive process of creating categories, from these descriptions, involved determining when
descriptions about the phenomenon were similar enough to be grouped, and when they were
different enough to require separate groupings. This 'set' of descriptive categories forms what is
called an outcome space (or space of variation), which contains different groupings of aspects of
a phenomenon. Central to this outcome space is that the categories are logically related, typically
hierarchically, with each successive category representing a more complex way of experiencing
the phenomenon under investigation (Marton & Booth, 1997)

After forming an outcome space, categories were arranged hierarchically depending on both
the number of aspects but also the complexity of the aspects, as outlined by Marton (1981).
This hierarchical arrangement created a spectrum—a variety—and constituted an intriguing
range of understanding in the group of student teachers. It is worth noting that the extent of
the range of the established categories is interesting because it provides insights into how great
the difference is in how the group as a whole views programming in technology education.

Data collection

Student participating in this study were from three higher education institutions in southern
Sweden, enrolled in a four-year program to become teachers for grades 4-6 (pupils 10-12 years
old). During one of the eight semesters, they can choose to specialize in either the social
sciences or the natural sciences and technology. This part of their professional education aims
to enhance their subject knowledge and subject didactics knowledge. The semester includes a
five-week course in technology, with the remaining 15 weeks divided among physics, biology,
and chemistry. At the time of data collection, the student teachers had completed their
technology course, and therefore, it was of interest to investigate what they did and did not
discern about the phenomenon of programming in technology education and whether and how
signs of subject didactics knowledge for teaching programming in technology were manifested.
The five-week technology course was taught full-time at these higher education institutions
(i.e., 7.5 credits). The course deals with relevant subject theory, together with subject didactics.
Among other things, the course’s content covers the history of technology and views of
technological knowledge, but also construction, mechanics, and technological systems. To
ensure that participants had been exposed to similar teaching content, the schedules of the
higher education institutions were compared. This established that there were few differences
in the teaching content. The proportion of the teaching that involved elements linked to
programming corresponds to two full days of the five weeks that the student teachers take the
technology course. These elements include the construction of an object which can be
controlled by programming. Two data collection sets were used to form a pool of meaning,
where the first set is individual interviews and the second is group interviews. The distribution
of the participants between individual and group interviews is outlined in Table 1 below.

 285

Table 1. Distribution of participants

Interviews Participants Total

Individual 8, including 2 pilot 8
Group 4 2 4 3 4 17

 25

An interview guide was used for both sets of data collection, and they were almost identical,
with only a few adjustments made to the second guide. An adaptation was made, given that
the data collection on one occasion was conducted individually and the other involved groups,
and additional follow-up questions were added to the interview guide for the groups. By using
two almost identical guides in two types of interviews, we ensure that the results can be
treated equally. The student teachers in the individual interviews came from two different
universities and the student in the group interviews came from one of them. Interviews were
conducted using Zoom for individual interviews and in person for group interviews. Audio
recordings, video recordings, and notes were taken to assist in the analysis process by the first
author of this article. Group interviews were planned after the individual interviews. Group
interviews allow for in-depth conversations within the group of participants without too much
meddling from the researcher. This resulted in allowing more freedom for student teachers to
talk, and the researcher played a smaller role than in the group interviews than they did in the
individual interviews. At the same time, it can be difficult to capture individuals' in-depth
understanding when the researcher does not ask so many follow-up questions. However, the
student teachers themselves contributed to a certain degree, posing follow-up questions to
each other during the group interviews due to the discussion-like atmosphere (Robson &
McCartan, 2016). In both data collection sets, the interview guide included pictures that were
used to initiate the conversation. The pictures represented four everyday artefacts: a tumble
dryer, traffic lights, a keyboard, and an elevator. These artefacts, familiar to student teachers,
were chosen because they can be controlled by programming and they are connected to
technological systems, which is an important part of the technology subject in primary schools.
The researcher’s task during the interview was first to keep participants focused on the
phenomenon throughout the interview. The researcher also attempted to gain more depth
from the interviewee’ answers by repeating the participants’ answers and asking whether they
would like to elaborate on their answers or add any additional comments or details. Examples
of questions that were asked include: “What competences do you think you need to be
prepared to teach programming in technology?” “What do you think learners need to know
about programming in technology?”, and “What is important that we teach them?” Each
individual interview lasted approximately 45–50 minutes, and the group interviews lasted
slightly longer. Each participating student teacher was informed about the aim and design of
the study and consented to participate. The participants were informed that the study follows
ethical guidelines from the Swedish Research Council (Vetenskapsrådet, 2017). The responses
were anonymised, and data was managed following the General Data Protection Regulation
(GDPR).

Method of analysis

The analysis in this study followed a phenomenographic approach, aiming to achieve a
comprehensive and nuanced understanding of student teachers' perceptions of the
phenomenon in focus—in this case, programming in technology education. The analysis of the

 286

transcripts from the individual interviews began with repeated read-throughs, where a
researcher, here the first author, reviewed the material to find expressions of the variation
between different ways of experiencing the phenomenon. In this way, the researcher first
adopts an open attitude to the data which gradually becomes more focused; the researcher
then forms a “pool of meaning” pertaining to the entire dataset (Wood, 2000). Within this
“pool of meaning”, the researcher identified similarities and differences in perceptions, leading
to an initial grouping aimed at discerning variations among the participants’ perceptions of the
phenomenon. While the first groupings were being made, all three authors discussed and
debated the groupings together. Once the researchers reviewed similarities and differences,
they also made descriptions of what constitutes the variation found between the groups as a
help when deciding whether the groups should be merged or new groups should be created.
The goal of the analysis process was to consistently identify the qualitative variation in student
teachers’ perceptions when they describe teaching programming in technology.

From this initial analysis phase of the individual interviews, three categories emerged. These
categories describe student teachers’ perceptions of teaching programming as: 1) learning a
programming language, 2) solving technological problems, and 3) understanding and describing
a technological environment. As the analysis extended to include group interviews, the original
categories remained and were strengthened, while one additional category also emerged. In
this category teaching programming is described as following instructions in a logical order. The
new category had fewer and less complex aspects describing the phenomenon than the
previously identified categories and is therefore placed lowest in the hierarchy. A change in the
numbering of the categories can therefore be seen below, where categories are described with
examples of excerpts that are characteristic of each category.

Validity of the study

Multiple efforts were made to strengthen the validity of the data analysis. Based on the
questions posed in the study, the method is appropriate and transparent as there are included
extracts from the collected excerpts that show answers obtained in the semi-structured
individual and group interviews. The overall questions in the interview guide have been
mentioned in the text, but the follow-up questions varied depending on the participants’
answers. To ensure that collected data have been analysed correctly, the categorisation has
been questioned and validated several times during the analysis process by other researchers,
both in informal discussions and during conference presentations (Collier-Reed et al., 2009).

Since the process of conducting the group interviews confirmed our created categories but also
broadened the variety of perceptions, we could assume that we reached saturation in our data
in this context and therefore chose not to continue conducting more interviews.

Results of the study
The analyses resulted in four categories describing student teachers’ perceptions of teaching
programming in technology education and indicating their potential subject didactics
knowledge for teaching programming in technology. The four categories of teaching
programming are:

1. following instructions in a logical order,

 287

2. learning a programming language,

3. solving technological problems,

4. understanding and describing a technological environment.

A selection of excerpts is presented below to describe what characterises each category.

Category 1: Following instructions in a logical order

In this category, student teachers describe teaching programming in technology as a series of
practical exercises where individuals follow oral or written instructions. What is emphasised
when describing the instructions is that it is important to organise them in a logical order and
that instructions are used as an input to get a specific output. However, no programming
concepts are used, which makes it unclear whether or not they understand the instructions to
be synonymous with a programming language. This indicates that the student teachers' focus
here is on a structural level—or the order in which instructions are given and how they are
followed—rather than on a referential level, where the focus is on the relationship between the
instruction and the context in which it is used. The focus on logical order in instructions
indicates that some aspects of CT are present.

In the following excerpts, student teachers emphasise the importance of following instructions
using a person (analogue programming) to illustrate the logical order needed to make
something happen:

Cecilia: Yes, but if they’re going to work together in pairs, one of them might have to tell
the other how to walk, and for them to get there, they have to say all the steps, which is
a simple way of showing what programming is.

Frida: It's a lot of following instructions and doing it from the top down and this way,
[…] for example, you're going to guide your friend and give instructions, or you're going
to write down an instruction and then the other person will try to follow it, for example,
draw something after the instruction.

Wera: I think it's good to start with analogue programming. Maybe giving instructions
to each other [...] and like this, OK, now you're going to programme someone to brush
their teeth. Write step one, step two, step three and then it could go wrong in any way.

The student teachers in this category focus on what and how to teach programming as ‘separate’
content, without connections to technology knowledge and to the intentions of programming,
so the ‘why’ question is absent in their descriptions. We interpret that as a gap in their potential
subject didactics knowledge regarding teaching programming in technology.

Category 2: Learning a programming language

In this category, student teachers describe programming as a language in the form of
instructions using specific concepts, such as loops and expressions. In their descriptions,
persons are no longer used as tools to follow instructions and there is a stronger link to
computers as receivers of the instructions than to individuals as receivers. The instructions are
no longer oral; instead, they use a language with commands (code)—a programming language.

 288

Programming in this category is not seen as a solution to a technological problem, instead,
student teachers describe that something happens in the language where you get an output for
a certain command (input).

Similarly, as in the previous category, there are traces of CT in the form of instructions following
a logical order. Instructions are foregrounded with a focus on the output of the programming
language. Still, there is a lack of connection to technological knowledge except in terms of
rudimentary systems thinking. The student teachers in this category describe how you can
connect components; for example, the computer operates on commands, through a
programming language. The following excerpts illustrate this and also describe the need for
understanding the language. What follows is an excerpt specifically addressing block
programming language:

Carin: It's these blocks, it's called block programming and so on. That's what I think
because otherwise, it's a too advanced a level.

Chris: It [block programming] contains almost the same thing as programming with
code, except that it is blocks, so it contains things like loops and expressions and such
things. So, they get to learn it in a simpler way with blocks.

In the excerpt below we see how the student teacher refers to the computer executing an
instruction in the form of commands, and it is about learning to use these commands. A basic
level of systems thinking is therefore demonstrated:

Daniella: [...] so how to start it on the computer, how to use these commands, how to
twist and turn so you get comfortable using it.

Student teachers’ potential subject didactics knowledge is still of a lower order in this category
since they mainly focus on teaching a specific language with a specific order on the commands,
rather than explaining the use of the programmed artefact outside the computer program,
which connects to the intentions of programming in technology.

Category 3: Solving technological problems

In this category, student teachers describe teaching as something that includes the use of a
programming language when solving technological problems. In contrast to the two previous
categories, here the instructions (the programming language) are no longer in the foreground,
but rather represent what can be achieved with the help of the instructions. The output is
defined in this category as something linked to a technological solution. Therefore, the category
also describes that the student teachers relate programming to technology knowledge.

The student teachers in this category also show a greater understanding of systems thinking, as
they describe several components and their close connections. CT is present as descriptions
where student teachers make links between programming and problem-solving, which did not
occur in the previous category.

The following excerpt shows a continued interest in practical engagement, while also
emphasising the necessity of problem-solving:

 289

Clara: […] and technology education is largely about, well, how should I put it,
identifying needs, and perhaps finding solutions to those needs, and it’s quite
challenging nowadays to find solutions to needs if you don’t have programming skills.

Daniella: […] But I think that when you program something, it’s because it’s meant to be
some kind of tool, like you want to see something, you want to cook something, you
want to dry something. It has a purpose, and that purpose is what belongs to
technology. It’s not just the fact that it’s programmed that makes it technology, but it’s
what comes after, in a sense.

Hanna: […] programming in technology is more like we program, for example, [...]
carousels, making carousels that make them spin and stuff. It’s about making things
work, you know. So, in technology, it’s like, it’s a bit more computer-oriented, in a way.

In this category, student teachers emphasise what can be achieved with programming as well
as the use of a language. We interpret that as a more developed subject didactics knowledge.
The ‘why’, ‘what’, and ‘how’ questions are all present to some extent.

Category 4: Understanding and describing a technological environment

In the final category, the teaching of programming is contextualised as part of society and
therefore other aspects are in the foreground compared to the previous categories. Here the
instructions are clearly in the background and instead components that can be linked to each
other are in the foreground. This indicates a more visible systems perspective, which was only
hinted at in the previous categories. Programming is described as part of a larger whole, a
human-built apparatus, technological environment, or system. The student teachers show CT in
this category by suggesting that teaching should include identifying problems, but also that
problems can be divided into smaller sub-problems (decomposition), and the effect overall
should be made visible. Björn and Daniella describe this by highlighting several components
where they describe teaching that deals with consequences for decisions and actions:

Björn: To understand that something is happening behind the scenes. There’s a reason
why the lights turn off in the school corridor when no one has been there. It happens
automatically, and it’s programmed to do so. [...] Many things can be done to maybe
save electricity or save water, and it can also contribute to sustainability thinking.
Because I think many pupils are very concerned about that nowadays. And through
technology and programming, there are great opportunities to address those concerns.

Daniella: No, but what I mean is that everything you learn, it’s something that gives you
power over your life and how you relate to society. And given that we have many more
technological gadgets, we also need to have more knowledge about them and how they
work so that we can engage with society and its structures. […] So that they can see that
programming exists all around, it’s in the traffic light when I go to school, what would
happen if something went wrong and what would be the effects in a larger context?

Student teachers’ subject didactics knowledge, in this category, is related to the environment
where programming is present in today’s society. This indicates that student teachers perceive
that teaching programming means not only conveying it as a language or as a method for
solving problems but also as a way of becoming literate in a technologically intensive society.

 290

Summary of the results

It is apparent in the hierarchical categorisation that there is a wide range of perceptions of
teaching programming between the highest and most developed perception (Cat 4), and the
lowest and least developed perception category (Cat 1). The lowest category contains fewer
and less complex aspects of programming in technology education, and then the number and
complexity of the aspects of teaching increase with each category.

There are therefore two dimensions that vary between categories:

• the way programming instructions or language are understood, and

• the way technological problems are understood.

The understanding of the instructions and the programming language changes significantly
between categories 1 and 2 but is maintained and in the background of their understanding in
categories 3 and 4. Thus, while the problem-solving dimension does not appear in the first two
categories, it is then visible in category 3 and central in the fourth category.

In summary, the dimensions of variation are related to the identified aspects in the categories.
Some aspects appear to be critical in transiting one's understanding from a lower category to a
higher one. These critical aspects are essential when it comes to choosing to which category the
description should be assigned.

The critical aspect that categorises a description into the second category, instead of the first, is
that in addition to emphasising programming as following instructions the student teachers
also express an understanding of a programming language by using specific words and
terminology. For a description to be categorised into the third category, the student teachers
also need to show an understanding of programming as a way of solving technological
problems. The critical aspect that needs to be identified for a description to be placed in the
fourth category is that the student teachers show an understanding that the technological
problem impacts on, and is impacted by, our everyday life and society in a broader sense.

Discussion
This study investigates student teachers' perceptions of teaching programming, after
completing their technology course in teacher education.

It appears that the studied student teachers' awareness of the connection to technology
education is relatively weak and that there is a predominant focus on instructions and the
programming language. This is in line with earlier studies of novice students learning to
program (Eckerdal et al., 2005), although it also contradicts findings by Vinnervik (2023), who
found that even if technology teachers teach basic coding they focus more on broader
technological competencies. In any case, student teachers should not be taught only to
program but also to be able to teach technology in a broader sense, where programming is one
way of using technology in solving societal problems. Therefore, it is imperative that student
teachers reach a more developed understanding of programming, including the problem-
solving dimension. This information on the studied student teachers' understanding is
important for teacher education to be able to develop student teachers’ subject didactics
knowledge in technology during their teacher education, and the variation in perceptions

 291

indicates what may be important to emphasise. It is important for technology student teachers
to acquire a broad competence that is relevant to and covers knowledge components taught in
schools (Doyle et al., 2019; Norström, 2014), but they also need programming knowledge that
is specific to teacher education; exactly what this is in a technology education context is not
clear due to a lack of research, but the results of this study indicate some such knowledge
components, for example, systems thinking.

From the results presented above, it is clear that most of the descriptions collected in the study
are categorised in the lowest two categories (Cat 1 and 2) and only a few descriptions are
categorised in the highest category (Cat 4). Given that a phenomenographic categorisation is
hierarchical, this is interesting because it gives us information about how well the
understanding of the chosen phenomenon—programming in technology education—is
developed among student teachers.

The results show that the majority of student teachers have difficulties demonstrating an
understanding of how programming is related to technology, in that they do not see
programming as part of the problem-solving dimension, nor do they clearly express an
understanding of how technological solutions have a function or purpose in society (Mitcham,
1994; Schatzberg, 2018). However, in categories three and four, some student teachers have
more fully developed CT which considers, e.g., design and user needs (Denning & Tedre, 2019),
and only in category four do a few student teachers mention conceptions of programming that
can be linked to more developed technological systems perspective and systems thinking (Ho,
2019; Slangen et al., 2011). Such thinking is important for developing subject didactics
knowledge in technology education and goes beyond merely focussing on what is taught in
schools.

The study underlines the importance not only of competence in technology but also subject
didactics knowledge for developing programming instruction in the subject of technology. The
identified knowledge is an awareness of the three critical aspects—understanding
programming language, understanding programming as a way of solving problems and the
relation of technological problems to everyday life and society—as well as two variations: the
programming language, and the problem-solving dimension. Together these aspects imply
critical components of subject didactics knowledge that is crucial for student teachers’
preparation for their coming profession.

The study thus advocates for a teacher education curriculum that not only imparts practical,
procedural skills but also promotes conceptual knowledge and contextual understanding
related to technology (Björklund & Nordlöf, 2024). This holistic approach ensures that future
technology teachers are well-equipped to address the challenges of teaching programming
effectively and adapting to the changing demands of the technological landscape in educational
settings and in society at large.

 292

References
Bijker, W. E., Hughes, T. P., & Pinch, T. J. (2012). The Social Construction of Technological

Systems, anniversary edition: New Directions in the Sociology and History of Technology.
MIT press.

Björklund, L., & Nordlöf, C. (2024). Product or Process Criteria?: What Teachers Value When
Assessing Programming. In Programming and Computational Thinking in Technology
Education (pp. 325-341). Brill.

Blomkvist, P., & Kaijser, A. (1998). Den konstruerade världen: Tekniska system i historiskt
perspektiv. B. Östlings bokförl [The Constructed World: Technical Systems in Historical
Perspective]. Symposion.

Booth, S., & Ingerman, Å. (2002). Making sense of Physics in the first year of study. Learning
and Instruction, 12(5), 493-507.

Collier-Reed, B. I., Ingerman, Å., & Berglund, A. (2009). Reflections on trustworthiness in
phenomenographic research: Recognising purpose, context and change in the process
of research. Education as change, 13(2), 339-355.

Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press.
Doyle, A., Seery, N., Canty, D., & Buckley, J. (2019). Agendas, influences, and capability:

Perspectives on practice in design and technology education. International Journal of
Technology and Design Education, 29(1), 143-159.

Eckerdal, A., Thuné, M., & Berglund, A. (2005). What does it take to learn'programming
thinking'? Proceedings of the first international workshop on Computing education
research, USA, 135 – 142. https://doi.org/10.1145/1089786.1089799.

Hallström, J. (2024). Design and Make—and Code? In J. Hallström & M. de Vries (Eds.),
Programming and Computational Thinking in Technology Education: Swedish and
International Perspectives. Brill.

Hallström, J., & Williams, P. J. (2022). Teaching and Learning about Technological Systems:
Philosophical, Curriculum and Classroom Perspectives (J. Hallström & P. J. Williams,
Eds.). Springer.

Ho, F. M. (2019). Turning challenges into opportunities for promoting systems thinking through
chemistry education. Journal of Chemical Education, 96(12), 2764-2776.

Hughes, T. P. (2004). Human-built world: How to think about technology and culture. University
of Chicago Press.

Ihde, D. (1993). Philosophy of technology: an introduction. Paragon House, New York. In.
Kline, S. J. (2003). What is technology. . In Philosophy of technology: the technological condition:

an anthology (pp. 210-212). Blackwell.
Koster, B., Brekelmans, M., Korthagen, F., & Wubbels, T. (2005). Quality requirements for

teacher educators. Teaching and teacher education, 21(2), 157-176.
Lindqvist, S. (1987). Vad är teknik? In B. Sundin (Ed.), I teknikens backspegel: antologi i

teknikhistoria. Carlsson.
Marton, F. (1981). Phenomenography—describing conceptions of the world around us.

Instructional science, 10(2), 177-200.
Marton, F., & Booth, S. A. (1997). Learning and awareness. Routledge.
Mitcham, C. (1994). Thinking through technology: The path between engineering and

philosophy. University of Chicago Press.
Nordlöf, C., Norström, P., Höst, G., & Hallström, J. (2022). Towards a three-part heuristic

framework for technology education. International Journal of Technology and Design
Education, 32(3), 1583-1604.

 293

Norström, P. (2014). How technology teachers understand technological knowledge.
International Journal of Technology and Design Education, 24(1), 19-38.
https://doi.org/10.1007/s10798-013-9243-y

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking,
digital competence and 21st century skills when learning programming in K-9. Education
Inquiry, 11(1), 1-17. https://doi.org/10.1080/20004508.2019.1627844

Osbeck, C., Ingerman, Å., & Claesson, S. (2018). An introduction to didactic classroom studies.
Didactic Classroom Studies a Potential Research Direction, 9-22.

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum: Implications
for future research. Education and Information Technologies, 22, 421-443.

Perez, A., & Svensson, M. (2024). Student Teachers´ Experiences of Programmed Technological
Artefacts: Range of Understanding and Ideas for Development. In J. Hallström & M. J. d.
Vries (Eds.), Programming and Computational Thinking in Technology Education:
Swedish and International Perspectives. Brill.

Perez, A., Svensson, M., & Hallström, J. (2023). Student teachers’ preconceptions of
programming as a content in the subject technology. The 40th International Pupils’
Attitudes Towards Technology Conference Proceedings 2023.

Robson, C., & McCartan, K. (2016). Real World Research, 4th Edn. Hokoben. In: New Jersey:
Wiley.

Rothgangel, M., & Vollmer, H. J. (2020). Towards a theory of subject-matter didactics. Research
in Subject-Matter Teaching and Learning (RISTAL), 3(1), 126-145.

Rowston, K., Bower, M., & Woodcock, S. (2022). The impact of prior occupations and initial
teacher education on post-graduate pre-service teachers’ conceptualization and
realization of technology integration. International Journal of Technology and Design
Education, 32(5), 2631-2669.

Runesson, U. (2006). What is it possible to learn? On variation as a necessary condition for
learning. Scandinavian journal of educational research, 50(4), 397-410.

Schatzberg, E. (2018). Technology: critical history of a concept. University of Chicago Press.
Schneider, C., Pakzad, U., & Schlüter, K. (2013). The Influence of Personal School Experience in

Biology Classes on the Beliefs of Students in University Teacher Education. Journal of
Education and Training Studies, 1(2), 197-210.

Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in education, 4(1), 1-94.
Selby, C., & Woollard, J. (2014). Refining an understanding of computational thinking.
Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies

from a teacher’s perspective. Education and Information Technologies, 22(2), 469-495.
Sjøberg, S. (2001). Innledning: Skole, kunnskap og fag. Svein Sjøberg, red., Fagdebatikk,

Fagdidaktisk innføring i sentrale skolefag, Oslo: Gyldendal.
Skolverket. (2017). Läroplan för grundskolan, förskoleklassen och fritidshemmet 2011:

reviderad 2017. In: Skolverket Stockholm.
Slangen, L., van Keulen, H., & Gravemeijer, K. (2011). What pupils can learn from working with

robotic direct manipulation environments. International Journal of Technology and
Design Education, 21(4), 449-469.

Trigwell, K. (2006). Phenomenography: An approach to research into geography education.
Journal of geography in higher education, 30(2), 367-372.

Tsai, F.-H., Hsiao, H.-S., Yu, K.-C., & Lin, K.-Y. (2021). Development and effectiveness evaluation
of a STEM-based game-design project for preservice primary teacher education.
International Journal of Technology and Design Education, 1-22.

 294

Van der Vleuten, E., Oldenziel, R., & Davids, M. (2017). Engineering the Future, Understanding
the Past: A Social History of Technology. Amsterdam University Press.

Vetenskapsrådet, S. (2017). Good research practice. Stockholm: Swedish Research Council.
Vinnervik, P. (2022). Implementing programming in school mathematics and technology:

teachers’ intrinsic and extrinsic challenges. International Journal of Technology and
Design Education, 32(1), 213-242.

Vinnervik, P. (2023). Programming in school technology education: the shaping of a new subject
content. International Journal of Technology and Design Education, 33(4), 1449-1470.

Vollmer, H. J. (2022). International Transfer of Knowledge: Translating Didaktik, Fachdidaktik,
Allgemeine Fachdidaktik. Research in Subject-matter Teaching and Learning (RISTAL),
5(1), 39-55.

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017).
Computer science in K-12 school curricula of the 2lst century: Why, what and when?
Education and Information Technologies, 22(2), 445-468.

Williams, P. J. (2017). Critique as a disposition. In P. J. Williams & K. Stables (Eds.), Critique in
design and technology education (pp. 135-152). Springer.

Wood, K. (2000). The experience of learning to teach: Changing student teachers' ways of
understanding teaching. Journal of curriculum studies, 32(1), 75-93.

	Abstract
	Keywords
	Introduction
	Aim and research questions

	Programming as part of technology education and subject didactics
	A framework for technological knowledge and computational thinking
	Methodology
	Phenomenography
	Data collection
	Method of analysis
	Validity of the study

	Results of the study
	Category 1: Following instructions in a logical order
	Category 2: Learning a programming language
	Category 3: Solving technological problems
	Category 4: Understanding and describing a technological environment
	Summary of the results

	Discussion
	References

